

Module/Course Description

BASICS OF MODELLING FOR FORESTRY AND LANDSCAPE (MNH 419)

A. Mo	A. Module Identity				
1.	Name	Basics of Modelling for Forestry and Landscape			
2.	Code	MNH 419			
3.	Credit	3 (2-3)			
4.	Semester	7			
5.	Coordinator	Prof. Dr. Ir. Herry Purnomo, M.Comp.			
6.	Lecturers	Prof. Dr. Ir. Herry Purnomo, M.Comp.			
		Dr. Ir. Budi Kuncahyo, MS.			
7.	Language	Indonesian			
8.	Program(s) in which	Internal department: Forest Management Study Program			
	the course is offered	Other departments:			
9.	Type of teaching	a. Traditional classroom: 100 %			
		b. Blended system: Traditional classroom%, Online%			
		c. e-Learning system:%			
		d. Others:%			

B. Workload of course components (total contact hours and credits per semester)								
Сі	edit		Contact Hours			Self-Study	Other	Total
SKS *)	ECTS	Lecture	Exercise	Laboratory	Practice	Self-Study	other	
3		28			42	56		126

*) Semester credit unit according to the Indonesian higher educational system

1 credit unit lecture = 2 hours/ week for lecture and 2 hours/ week for self-study within 14 weeks/ semester 1 credit unit class exercise or laboratory or field practice = 3 hours/week within 12-14 weeks/semester **) 1 hour for lecture= 50 minutes; 1 hour for class exercise or laboratory or field practice = 60 minutes

C. Module Objective (Learning Outcomes)

Student having the ability to think systematically and to develop the simple simulation models

in forestry and landscape

No.	LO in Learning Domains	Teaching Strategies	Assessment Methods
a.	Knowledge		
1.	Students are able to	Presentation of teaching	Midterm Exam (5%)
	comprehend the forestry	materials.	
	and landscape issues	Debriefing sessions	
	holistically		
2.	Students are able to explain	Presentation of teaching	Midterm Exam (5%)
	the landscape approach	materials.	
		Debriefing sessions	
3.	Students are able to	Presentation of teaching	Midterm Exam;
	interpret the synergies and	materials	Independent Task
	trade-offs of forest and	Debriefing sessions	(5%)
	landscape management	Practice Lessons	
4.	Students are able to outline	Presentation of teaching	Midterm Exam;
	the driver factor and their	materials	Independent Task
	effect on landscape change	Debriefing sessions	(5%)
		Practice Lessons	
5.	Students are able to explain	Presentation of teaching	Midterm Exam;
	the model of climate change	materials	Independent Task
	mitigation and adaptation	Debriefing sessions	(10%)
		Practice Lessons	
6.	Students are able to outline	Presentation of teaching	Midterm Exam;
	the basics of adaptive and	materials	Independent Task
	collaborative management in	Debriefing sessions	(10%)
	the landscape management	Practice Lessons	
7.	Students are able to	Presentation of teaching	Midterm Exam;
	illustrate the interaction	materials	Independent Task
	between natural resources,	Debriefing sessions	(10%)
	management techniques,	Practice Lessons	
	actors, institutions, and		
	governance		

8.	Students are able to explain	Presentation of teaching	Final Exam;
	the systems approaches and	materials	Independent Task
	multi-disciplinary in forestry	Debriefing sessions	(5%)
	and landscape management	Practice Lessons	
b.	Skills		
1.	Students are able to build the	Presentation of teaching	Final Exam;
	system dynamic model in	materials	Independent Task
	landscape management	Debriefing sessions	(15%)
		Practice Lessons	
c.	Competences:		
1.	Students are able to create	Presentation of teaching	Final Exam;
	the models and future	materials	Independent Task
	scenarios for landscape and	Debriefing sessions	(30%)
	forest management based on	Practice Lessons	
	the ecological, economic and		
	social aspect		

E. Module Content				
List of Topic	Number of Weeks	Contact Hours		
A general model of the landscape and its components	1	2		
Landscape management objectives and indicators	1	2		
The model of interaction between forestry, plantations, food	1	2		
agriculture, and mining				
Population growth, markets, international pressure and climate	1	2		
change				
The reciprocal interaction between landscape with climate change	1	2		
mitigation and adaptation				
The basis for landscape management and adaptive management of	1	2		
natural resources				
Landscape governance	1	2		
Complex system theory	1	2		
System dynamics modeling	2	4		
Landscape management	4	8		

F. Course Assessments				
No.	Assessment Type *)	Schedule (Week Due)	Proportion of the Final Mark	
1.	Mid-term examination	8 th week	40 %	
2.	Independent task	End of each week	20 %	
3.	Final examination	16 th week	40 %	

*) Example: mid-term examination, final examination, quiz, homework, project, etc.

G. Media Employed

- Classroom
- Laptop
- LCD
- Modeling software
- Microphone (loudspeaker)

H. Learning Resources

h1. Textbooks:

- 1. Chapin III FS, Kofinas GP, Folke C (Eds.). 2009. *Principles of Ecosystem Stewardship: Resilience-Based Natural Resource Management in a Changing World*. Springer. 402p.
- 2. Chomitz KM. 2007. *At Loggerheads? Agricultural expansion, poverty reduction and environment in the tropical forests*. The World Bank, Washington DC. 284pp.
- 3. Grant JW, Pedersen EK, Marin SL. 1997. *Ecology and Natural Resource Management: System Analysis and Simulation.* Reading: Addison-Wesley.
- 4. Kuncahyo. 2006. *Model simulasi pengaturan hasil lestari yang berbasis kebutuhan masyarakat desa hutan*. Disertasi. IPB, Bogor.
- 5. Lee KN. 1993. *Compass and Gyroscope: Integrating Science and Politics for the Environment*. Washington D.C.: Island Press.
- 6. Ostrom E. 2007. Sustainable social-ecological systems: an impossibility. Presented at the 2007 Annual Meetings of the American Association for the Advancement of Science, "Science and Technology for Sustainable Well-Being," 15–19 February in San Francisco and Proceeding of the National Academy of Sciences (USA).
- 7. Purnomo H. 2012. *Pemodelan dan Simulasi untuk Pengelolaan Adaptif Sumberdaya Alam dan Lingkungan*. Bogor: IPB Press
- 8. Schlaepfer R. 1997. *Ecosystem-Based Management of Natural Resources: a Step Towards Sustainable Development*. Occasional paper no. 6. Austria: IUFRO.
- 9. Schlaepfer R, Elliott C. 2000. Ecological and landscape considerations in forest management: The end of forestry. In K. von Gadow, T. Pukkala & M. Tom6 (Eds), Sustainable forest management (p. 1-67). Dordrecht, The Netherlands: Kluwer Academic Publishers Shafik N. 1994. Economic development and environmental quality: an econometric analysis. Oxford Economic Papers 46 (October): 757–773
- 10. Sterman JD. 2000. *Business Dynamics: Systems Thinking and Modeling for a Complex World. Madison* Wisconsin: Irwin McGraw-Hill.

h2. Journal:

- Purnomo H, Suyamto D, Irawati RH. 2013. Harnessing the climate commons: an agentbased modelling approach to making reducing emission from deforestation and degradation (REDD) + work. *Mitigation and Adaptation Strategies for Global Change*. 18(3): 471-489
- Purnomo H, Mendoza GA. 2011. A system dynamics model for evaluating collaborative forest management: A Case Study in Indonesia. *International Journal of Sustainable Development & World Ecology.* 18(2): 164–176

- 3. Purnomo H, Guizol P, Muhtaman DR. 2009. Governing the teak furniture business: A global value chain system dynamic modeling approach. *Environmental modelling and software*. 24 (12): 1391-1401.
- 4. Purnomo H, Guizol P. 2006. Simulating forest plantation co-management with multiagent-system. *Mathematical and Computer Modeling.* 44:535-552
- Purnomo H, Mendoza GA, Prabhu R, Yasmi Y. 2005. Developing multi-stakeholder forest management scenarios: a multi-agent system simulation approach. *Forest Policy and Economics*. 7: 475–491
- Purnomo H, Yasmi Y, Prabhu R, Hakim S, Jafar A, Suprihatin. 2003. Collaborative modeling to support forest management: qualitative systems analysis at Lumut Mountain Indonesia. *Small-scale Forest Economics, Management and Policy*. 2(2): 259-275