

Module/Course Description

FOREST BIOMETRICS (MNH 316)

A. Mo	A. Module Identity			
1.	Name	Forest Biometrics		
2.	Code	MNH 316		
3.	Credit	3 (2-3)		
4.	Semester	5		
6.	Coordinator	Dr. Ir. Budi Kuncahyo, MS.		
7.	Lecturers	Prof. Dr. Ir. Herry Purnomo, M.Comp.		
		Dr. Ir. Budi Kuncahyo, MS.		
		Dr. Ir. Teddy Rusolono, MS.		
8.	Language	Indonesian		
9.	Program(s) in which	Internal department: Forest Management Study Program		
	the course is offered	Other departments:		
10.	Type of teaching	a. Traditional classroom: 100 %		
		b. Blended system: Traditional classroom%, Online%		
		c. e-Learning system:%		
		d. Others:%		

B. Workload of course components (total contact hours and credits per semester)								
Cı	edit		Contact Hours					Total
SKS *)	ECTS	Lecture	Class Exercise	Laboratory	Field Practice	Self-Study	Other	TOLAT
3		28	36			56		120

*) Semester credit unit according to the Indonesian higher educational system

1 credit unit lecture = 2 hours/ week for lecture and 2 hours/ week for self-study within 14 weeks/ semester 1 credit unit class exercise or laboratory or field practice = 3 hours/week within 12-14 weeks/semester **) 1 hour for lecture= 50 minutes; 1 hour for class exercise or laboratory or field practice = 60 minutes

C. Module Objective (Learning Outcomes)

Students having the ability to quantitative and systemic analysis of forestry problems and implemented on forest management scenarios

No.	LO in Learning Domains	Teaching Strategies	Assessment Methods
a.	Knowledge		
1.	Students are able to	Presentation and discussion	Midterm Exam and
	comprehend the role of forest		Practicum Test (5%)
	biometrics in forest		
	management Biometrics		
2.	Students are able to explain	Presentation and discussion	Midterm Exam and
	the notion of variables, scale		Practicum Test (5%)
	of measurement, the influence		
	on the precision and accuracy		
	of the data, the limitations of		
	the analysis tool and how to		
	choose the appropriate		
	analysis tools.		
3.	Students are able to explain	Presentation, discussion and	Final Exam and
	the general systems theory	task modelling	Practicum Test (5%)
	(general system theory),		
	systemic thinking (systems		
	thinking) and the possibility of		
	its application.		
4.	Students are able to identify	Presentation, discussion and	Final Exam and
	the basic behaviour of forest	task modelling	Practicum Test (20%)
	and environmental		
	management system		
) .	Skills		
1.	Students are able to outline	Presentation, discussion and	Midterm Exam and
	the relationship between	task modelling	Practicum Test (20%)
	variables of a system of forest		
	ecosystem or forestry		
	systems, and they are able to		
	apply the technique of		
	analysis of the relationship		
	between these variables.		
2.	Students are able to identify	Presentation, discussion and	Midterm Exam and
	the problems of forestry with	task modelling	Practicum Test (10%)

	the response data is chopped and categories, and are able to		
	operate the relevant data		
	analysis techniques.		
3.	Students are able to outline	Presentation, discussion and	Midterm Exam and
	on the concept of growth and	task modelling	Practicum Test (10%)
	yield and they are able to		
	demonstrate the		
	mathematical/statistical		
	approach to modelling growth		
4.	Students are able to show	Presentation, discussion and	Final Exam and
	examples on the phasing of	task modelling	Practicum Test (5%)
	system modelling		
C.	Competences:		
1.	Students are able to create a	Presentation, discussion and	Final Exam and
	simple system dynamics	task modelling	Practicum Test (10%)
	model in the field of forest		
	management		
2.	Students are able to compose	Presentation, discussion and	Final Exam and
	models of qualitative and	task modelling	Practicum Test (10%)
	semi-quantitative		
	management of forests and the		
	environment.		

E. Module Content		
List of Topic	Number of Weeks	Contact Hours
Introduction	1	2
Data Structures and Analysis Compatible	1	2
Analysis of Relationships One or More Variables	2	4
Count Data Analysis and Categorical	2	4
Approach to Growth Model	1	2
Systems Theory	1	2
Stages of Modeling Systems	1	2
The Dynamics of The System	1	2
The Structure and Behavior of The Basic System	3	6
Soft Systems Methodology and Fuzzy Cognitive Mapping	1	2

F. C	F. Course Assessments					
No.	Assessment Type *)	Schedule (Week Due)	Proportion of the Final Mark			
1.	Mid-term examination	8 th week	40 %			
2.	Final examination	16 th week	40 %			
3.	Practicum Task	End of each practicum	20 %			

*) Example: mid-term examination, final examination, quiz, homework, project, etc.

G. Media Employed

- Classroom
- Laptop
- LCD
- Microphone (loudspeaker)
- Practical tools

H. Learning Resources

h1. Textbooks:

- 1. Grant JW, Pedersen EK, Marin SL. 1997. *Ecology and Natural Resource Management: System Analysis and Simulation.* Reading: Addison-Wesley.
- 2. Lee KN. 1993. Compass and Gyroscope: *Integrating Science and Politics for the Environment.* Washington D.C.: Island Press.
- 3. Prodan, Michail. 1968. Forest Biometrics. Pergamon Press. London.
- 4. Purnomo H. 2012. Pemodelan dan Simulasi untuk Pengelolaan Adaptif Sumberdaya Alam dan Lingkungan. Bogor: IPB Press
- 5. Sokal, RR and Rohlf FJ. 1995. *Biometry: The Principles and Practice of Statistics in Biology Research.* Third Edition. Freeman and Company, New York.
- 6. Sterman JD. 2000. *Business Dynamics: Systems Thinking and Modeling for a Complex World*. Madison, Wisconsin: Irwin McGraw-Hill.
- 7. van Laar, Anthonie. 1999. Forest Biometry. Sappi Forest, Stellenbosch.

h2. Journal:

- Purnomo H, Suyamto D, Irawati RH. 2013. Harnessing the climate commons: an agentbased modelling approach to making reducing emission from deforestation and degradation (REDD) + work. *Mitigation and Adaptation Strategies for Global Change*. 18(3): 471-489
- 2. Purnomo H, Mendoza GA. 2011. A system dynamics model for evaluating collaborative forest management: A Case Study in Indonesia. *International Journal of Sustainable*

Development & World Ecology. 18(2): 164–176

- 3. Purnomo H, Guizol P, Muhtaman DR. 2009. Governing the teak furniture business: A global value chain system dynamic modeling approach. *Environmental modelling and software*. 24 (12): 1391-1401.
- 4. Purnomo H, Guizol P. 2006. Simulating forest plantation co-management with multiagent-system. *Mathematical and Computer Modeling.* 44:535-552
- Purnomo H, Mendoza GA, Prabhu R, Yasmi Y. 2005. Developing multi-stakeholder forest management scenarios: a multi-agent system simulation approach. *Forest Policy and Economics* 7: 475–491
- Purnomo H, Yasmi Y, Prabhu R, Hakim S, Jafar A, Suprihatin. 2003. Collaborative modeling to support forest management: qualitative systems analysis at Lumut Mountain Indonesia. *Small-scale Forest Economics, Management and Policy* 2(2): 259-275