

Module/Course Description SENSING FORESTRY GEOMATICS (MNH 315)

A. Module Identity			
1.	Name	Forest Biometrics	
2.	Code	MNH 315	
3.	Credit	3 (2-3)	
4.	Semester	6	
5.	Coordinator	Prof. Dr. Ir. I Nengah Surati Jaya, M.Agr.	
6.	Lecturers	Prof. Dr. Ir. I Nengah Surati Jaya, M.Agr.	
		Dr. Ir. M. Buce Saleh, MS.	
		Dr. Nining Puspaningsih, M.Si.	
7.	Language	Indonesian	
8.	Program(s) in which	Internal department: Forest Management Study Program	
	the course is offered	Other departments:	
9.	Type of teaching	a. Traditional classroom: 100 %	
		b. Blended system: Traditional classroom%, Online%	
		c. e-Learning system:%	
		d. Others:%	

B. Workload of course components (total contact hours and credits per semester)								
Cı	redit		Contact Hours					Total
SKS *)	ECTS	Lecture	Class Exercise	Laboratory	Field Practice	Self-Study	Other	Total
3		28	6	33		56		123

*) Semester credit unit according to the Indonesian higher educational system

1 credit unit lecture = 2 hours/ week for lecture and 2 hours/ week for self-study within 14 weeks/ semester 1 credit unit class exercise or laboratory or field practice = 3 hours/week within 12-14 weeks/semester **) 1 hour for lecture= 50 minutes; 1 hour for class exercise or laboratory or field practice = 60 minutes

C. Module Objective (Learning Outcomes)

Students having the ability to explain remote sensing technology and geomatics in forest resource management and they are able to use technology and techniques for analyzing image data for classification of forest types and estimation of forest stocks and their changes.

D. Detailed Course Learning Outcomes (LO) in Relation to Learning Domains, Teaching Strategies, and Assignment Methods				
No.	LO in Learning Domains	Teaching Strategies	Assessment Methods	
a.	Knowledge		L	
1.	Students are able to	Presentation of teaching	Midterm Exam (5%)	
	recognize the concepts of	materials		
	geomatics and remote sensing	FAQ		
	and why they are required in			
	forestry			
2.	Students are able to explain	Presentation of teaching	Midterm Exam and	
	the scope of geomatics and	materials	Individual Task (5%)	
	remote sensing in forestry	Discussion and question and answer		
3.	Students are able to outline	Presentation of teaching	Final Exam and	
	the SIG concepts and links	materials	Individual Task (5%)	
	between the forestry science	Discussion and question and		
		answer		
b.	Skills			
1.	Students are able to operate	Presentation of teaching	Midterm Exam and	
	the geometric correction and	materials	Individual Task (10%)	
	registration of satellite images	Discussion and question and		
		answer		
		Practicum		
2.	Students are able to produce	Presentation of teaching	Midterm Exam and	
	the natural color composite	materials	Individual Task (7%)	
	image and standard false	Discussion and question and		
	image, as well as to apply the	answer		
	visual interpretation	Practicum		
	techniques of forest types and			
	forest ecosystems			
3.	Students are able to operate	Presentation of teaching	Midterm Exam and	
	the image improvement	materials	Individual Task (7%)	

	techniques and image	Discussion and question and	
	enhancement for the detection	answer	
	of forest ecosystem attributes	Practicum	
4.	Students are able to use the	Presentation of teaching	Midterm Exam and
	digital classification	materials	Individual Task (10%)
	techniques for forest cover	Discussion and question and	
	and land	answer	
		Practicum	
5.	Students are able to	Presentation of teaching	Midterm Exam and
	demonstrate the monitor	materials	Individual Task (7%)
	changes in forest cover with	Discussion and question and	
	multi-time satellite technology	answer	
		Practicum	
6.	Students are able to build the	Presentation of teaching	Final Exam and
	spatial data for forestry	materials	Individual Task (5%)
		Discussion and question and	
		answer	
		Practicum	
7.	Students are able to organize	Presentation of teaching	Final Exam and
	the spatial database for	materials	Individual Task (10%)
	forestry	Discussion and question and	
		answer	
		Practicum	
8.	Students are able to	Presentation of teaching	Final Exam and
	manipulate the spatial	materials	Individual Task (10%)
	operations	Discussion and question and	
		answer	
		Practicum	
9.	Students are able to construct	Presentation of teaching	Final Exam and
	the spatial models for forest	materials	Individual Task (5%)
	planning	Discussion and question and	
		answer	
		Practicum	
10.	Students are able to operate	Presentation of teaching	Final Exam and
	the spatial simulation	materials	Individual Task (7%)

and
ching Final Exam and
Individual Task (7%)
1 and

E. Module Content				
List of Topic	Number of Weeks	Contact Hours		
Introduction; Concepts of Geomatics and Remote Sensing	1	2		
Scope of Geomatics and Remote Sensing in Forestry	1	2		
Geometric Correction and Registration of Satellite Image	1	2		
Composite Color to Vegetation and Visual Interpretation of	1	2		
Forest Ecosystem				
Image improvement techniques and image enhancement for the	1	2		
detection of forest ecosystem attributes				
Digital Classification of Forest Cover and Land	1	2		
Detection and Monitoring with Satellite Imagery	1	2		
SIG Concepts and links between the Forestry Science	1	2		
Spatial data for Forestry	1	2		
Spatial database for Forestry	1	2		
Manipulation and Analysis of Spatial Operations	1	2		
Spatial Modelling for Forest Planning	1	2		
Spatial Simulation Modelling for Forest Management	1	2		
Presentation of Forestry Spatial Information	1	2		

F. Course Assessments				
No.	Assessment Type *)	Schedule (Week Due)	Proportion of the Final Mark	
1.	Mid-term examination	8 th week	40 %	
2.	Final examination	16 th week	40 %	
3.	Individual Task	End of each practicum	20 %	

*) Example: mid-term examination, final examination, quiz, homework, project, etc.

G. Media Employed

- Classroom
- Laptop
- LCD
- Microphone (loudspeaker)
- Practical tools

H. Learning Resources

h1. Textbooks:

- 1. Aeronoff S. 1995. *Geographic Information System: A Management Persepective*. Wld. Publication.
- 2. Bettinger P, Mg Wing. 2004. Gis Application in Forestry and Natural Resource Management.
- 3. Burrough PA. 1986. Principles of Geographical Information Systems for Land Resources Assessment.
- 4. Esri. 1996. Using The Arcview Spatial Analyst.
- 5. Goodchild M, et al. 1996. *Gis and Environmental Modeling: Progress and Research Issues.*
- 6. Gonzales RC, Wintz P. 1987. *Digital Image Processing*. Machachussetts: Addisson wesley Publishing Comp. 502 p.
- 7. Howard J. 1991. *Remote Sensing of Forest Resource. Theory znd Application*. Chapman and Hall. 418 p.
- 8. Jaya INS. 1996. *Penginderaan Jauh Satelit*. Fakultas Kehutanan IPB. Diktat kuliah.
- 9. Jaya INS. 2002. Aplikasi Sistem Informasi Geografis untuk Kehutanan. Bogor: IPB Press
- 10. Jensen JR. 1986. Introductory Digital Image Processing. A Remote Sensing Perspective. Prentice-Hall.
- 11. Lillesand T, Kiefer R. 1994. *Remote Sensing and Image Interpretation*. New York: John Wiley and Sons, Inc. 750 p.
- 12. Richards, J. A. 1993. *Remote Sensing Digital Image Analysis: An Introduction*. Springer-Verlag.
- 13. Sabin, FS Jr. 1981. *Remote Sensing and Photo-Interpretation*. New York: WH Freeman and comp.
- 14. Swain PH, Davis SM. 1976. *The Remote Sensing: A Quantitative Approach*. New York: Mc-Grawhill.
- 15. Wilkie DS, Finn JT. 1996. *Remote Sensing Imagery For Natural Resource Monitoring*. Columbia University Press.