

Module/Course Description CALCULUS (MAT 103)

A. Mo	A. Module Identity				
1.	Name	Calculus			
2.	Code	MAT 103			
3.	Credit	3 (2-3)			
4.	Semester	2			
5.	Coordinator	Ali Kusnanto			
6.	Lecturers	Amril Aman, Bib. P. Silalahi, Budi Saharjo, Berlian Setiawaty,			
		Donny C. Lesmana, Endar H. Nugrahani, Elis Khatizah,			
		Fahren Bukhari, Farida Hanum, Hadi Sumarno, I Gusti Putu			
		Purnaba, I Wayan Mangku, Jaharuddin, Tito Julito, Nur			
		Aliatiningtyas, N.K. Kutha Ardana, Paian Sianturi, Prapto T.			
		Supriyo, Ruhiyat, Retno Budiarti, Sugi Guritman, Sri Nurdiati,			
		Siswandi, Toni Bakhtiar, Teduh Wulandari Mas'oed,			
		Windiani Erliana, Hidayatul Mayyani			
7.	Language	Indonesian			
8.	Program(s) in which	Internal department: -			
	the course is offered	Other departments: Common First Year Program (Education			
		of general competency) by University			
9. Type of teaching a. Tra		a. Traditional classroom: 100 %			
		b. Blended system: Traditional classroom %, Online %			
		c. e-Learning system: %			
		d. Others:%			

B. Workload of course components (total contact hours and credits per semester)								
Cı	redit	Contact Hours			Colf Study Other Total		Total	
SKS *)	ECTS	Lecture	Exercise	Laboratory	Practice	Sell-Study	oulei	
3		28	42			56		126

*) Semester credit unit according to the Indonesian higher educational system

1 credit unit lecture = 2 hours/ week for lecture and 2 hours/ week for self-study within 14 weeks/ semester 1 credit unit class exercise or laboratory or field practice = 3 hours/week within 12-14 weeks/semester **) 1 hour for lecture= 50 minutes; 1 hour for class exercise or laboratory or field practice = 60 minutes

C. Module Objective (Learning Outcomes)

The student having the ability to explain the basic concepts in mathematics (derived function, integral function, and introduction to differential equations); to use basic mathematical techniques for solving simple math problems; to apply basic mathematical concepts and techniques for applied problems solving.

D. Detailed Course Learning Outcomes (LO) in Relation to Learning Domains, Teaching Strategies, and Assignment Methods					
No. LO in Learning Domains		Teaching Strategies	Assessment Methods		
a.	Knowledge				
1.	Students are able to use the	Presentation of teaching	Midterm Exam		
	concept of derivatives, the	materials			
	relationship between the	Debriefing sessions			
	slope and rate of change and	Exercise			
	to compute the derivative of				
	a function				
2.	Students are able to compute	Presentation of teaching	Midterm Exam		
	the maximum and minimum	materials			
	values of a function,	Debriefing sessions			
	monotonic interval and	Exercise			
	curvature of a function, find				
	the asymptote of a function				
	and to use it for draw graphs				
	and solve mathematical				
	problems related to				
	derivatives				
3.	Students are able to analyse	Presentation of teaching	Midterm Exam, Quiz		
	the relationship between	materials			
	broad concepts with definite	Debriefing sessions			
	integrals, the relationship	Exercise			
	between integrals and				
	derivatives, and to compute				
	the definite and indefinite				
	integrals by the substitution				
	method				
4.	Students are able to	Presentation of teaching	Final Exam		
	calculate the derivative and	materials			

	integral of logarithmic,	Debriefing sessions	
	exponential, and	Exercise	
	trigonometric functions		
5.	Students are able to solve	Presentation of teaching	Final Exam
	integrals by using partial	materials	
	fraction integration	Debriefing sessions	
	techniques and integration of	Exercise	
	rational functions		
6.	Students are able to use	Presentation of teaching	Final Exam, Quiz
	integrals in determining the	materials	
	area between curves and to	Debriefing sessions	
	use the Mean Value Theorem	Exercise	
	for integrals		
7.	Students are able to solve	Presentation of teaching	Final Exam, Quiz
	first-order differential	materials	
	equations by separation of	Debriefing sessions	
	variables	Exercise	
			1

E. Module Content				
List of Topic	Number of Weeks	Contact Hours		
Interpretation of Derivative	1	2		
Minimum and Maximum Value, The Shape of a Graph	2	4		
Definite and Indefinite Integrals	2	4		
Derivative and Integral of Logarithmic, Exponential, and Trigonometric Functions	3	6		
Partial Fraction Integration and Integration of Rational Functions	2	4		
The Mean Value Theorem	2	4		
First-Order Differential Equations	2	4		

F. Course Assessments					
No.	Assessment Type *)	Schedule (Week Due)	Proportion of the Final Mark		
1.	Mid-term examination	8 th week	45 %		
2.	Final examination	16 th week	45 %		
3.	Quiz	6 th and 15 th week	10%		

*) Example: mid-term examination, final examination, quiz, homework, project, etc.

G. Media Employed

- Classroom
- Laptop
- LCD
- Microphone (loudspeaker)
- Whiteboard

H. Learning Resources

h1. Textbooks:

- Varberg D, Purcell EJ, Rigdon SE. 2011. *Kalkulus*. Ed ke-9. Jilid 1. Susila IN, penerjemah. Jakarta (ID): Penerbit Erlangga. Terjemahan dari: Calculus. 9th Ed.
- Stewart J. 2002. *Kalkulus*. Ed ke-4. Jilid 1. Susila IN, Gunawan H, penerjemah. Jakarta (ID): Penerbit Erlangga. Terjemahan dari: Calculus. 4th Ed.