

Module/Course Description

PHYSIC (FIS 100)

A. Mo	A. Module Identity			
1.	Name	Physic		
2.	Code	FIS 100		
3.	Credit	3 (2-3)		
4.	Semester	2		
5.	Coordinator	Dr. Mersi Kurniati, M.Si		
6.	Lecturers	Lecturer Team of Physic Department		
7.	Language	Indonesian		
8.	Program(s) in which	Internal department: -		
	the course is offered	Other departments: Common First Year Program (Education		
		of general competency) by University		
9.	Type of teaching	a. Traditional classroom: 100 %		
		b. Blended system: Traditional classroom %, Online %		
		c. e-Learning system: %		
		d. Others:%		

B. Workload of course components (total contact hours and credits per semester)								
Cı	redit		Contact Hours			Self-Study	Other	Total
SKS *)	ECTS	Lecture	Exercise	Laboratory	Practice	Self-Study	other	
3		28			30	56		114

*) Semester credit unit according to the Indonesian higher educational system

1 credit unit lecture = 2 hours/ week for lecture and 2 hours/ week for self-study within 14 weeks/ semester 1 credit unit class exercise or laboratory or field practice = 3 hours/week within 12-14 weeks/semester **) 1 hour for lecture= 50 minutes; 1 hour for class exercise or laboratory or field practice = 60 minutes

C. Module Objective (Learning Outcomes)

The student having the ability to use physics formulations in solving simple physics problems

and applying them for applied problems solving

No.	LO in Learning Domains	Teaching Strategies	Assessment Methods
a.	Knowledge	I	
1.	Students are able to explain	Presentation of teaching	Midterm Exam
	the scientific method and the	materials.	
	importance of measurement	Debriefing sessions	
	in physics.		
2.	Students are able to predict	Presentation of teaching	Midterm Exam
	the position, velocity, and	materials.	
	acceleration of an object in	Debriefing sessions	
	one-dimensional motion by		
	using the functional relations		
	of those vector quantities as a		
	function of time.		
3.	Students are able to outline	Presentation of teaching	Midterm Exam
	the motion phenomenon and	materials.	
	its relation with the causes of	Debriefing sessions	
	those movements		
4.	Students are able to use the	Presentation of teaching	Midterm Exam
	concepts of work and energy	materials.	
	as well as the concepts of	Debriefing sessions	
	impulse and momentum in		
	solving motion problems		
5.	Students are able to solve the	Presentation of teaching	Midterm Exam
	physics questions on	materials.	
	kinematics and circular	Debriefing sessions	
	motion rotation		
6.	Students are able to explain	Presentation of teaching	Midterm Exam
	fluid static and fluid dynamic	materials.	
		Debriefing sessions	
7.	Students are able to explain	Presentation of teaching	Midterm Exam
	the concepts of vibrations,	materials.	
	waves, and sounds	Debriefing sessions	
8.	Students are able to explain	Presentation of teaching	Final Exam
	the concepts of temperature	materials.	
	and heat	Debriefing sessions	

9.	Students are able to outline	Presentation of teaching	Final Exam
	the thermodynamics study	materials.	
		Debriefing sessions	
10.	Students are able to explain	Presentation of teaching	Final Exam
	the static electricity	materials.	
		Debriefing sessions	
11.	Students are able to solve the	Presentation of teaching	Final Exam
	physics questions on electric	materials.	
	current and direct current	Debriefing sessions	
	circumference		
12.	Students are able to explain	Presentation of teaching	Final Exam
	the concept of magnetism	materials.	
		Debriefing sessions	
13.	Students are able to solve the	Presentation of teaching	Final Exam
	physics questions on lights	materials.	
	and optics	Debriefing sessions	
14.	Students are able to solve the	Presentation of teaching	Final Exam
	questions on modern physics	materials.	
		Debriefing sessions	

E. Module Content				
List of Topic	Number of Weeks	Contact Hours		
Introduction, System of Units and Vectors	1	2		
Kinematics	1	2		
Dynamics	1	2		
Energy and Momentum	1	2		
Kinematics and Rotation of Rigid Object	1	2		
Fluid	1	2		
Vibrations and Waves	1	2		
Temperature, Heat and Expansion	1	2		
Laws of Thermodynamics	1	2		
Electric Charge, Field, and Potential	1	2		
Electric Current and Direct Current Circumference	1	2		
Magnetic Field and Electromagnetic Induction	1	2		
Light and Optics	1	2		
Modern Physics	1	2		

F. Course Assessments					
No.	Assessment Type *)	Schedule (Week Due)	Proportion of the Final Mark		
1.	Mid-term examination	8 th week	30 %		
2.	Final examination	16 th week	30 %		
3.	Practicum	10 times in a semester	30 %		
4.	Assignment	Every Week	10 %		

*) Example: mid-term examination, final examination, quiz, homework, project, etc.

G. Media Employed

- Classroom
- Laptop
- LCD
- Microphone (loudspeaker)
- Whiteboard

H. Learning Resources

h1. Textbooks:

- 1. Cutnell JD, Johnson KW. 2013. Introduction to Physics. Singapore: Wiley.
- 2. Tipler PA. 1991. Fisika untuk Sains dan Teknik Jilid 1. Jakarta (ID): Penerbit Erlangga
- 3. Haliday D, Resnick R. 1983. Fisika Jilid 1. Jakarta (ID): Penerbit Erlangga